<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/2889481600974867583?origin\x3dhttp://innocentlyguiltyvicky.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>
innocentlyguiltyvicky @blogspot.com ♥
Monday, October 12, 2009

Hello world.
It's 3.52am now, on 12 October 2009.
In like 9 hours time, my last EYAs in RG would have been over!
Let me ratttle on formulas in my own world, to please myself. (:

Waves & Sound
V = frequency x wavelength
V = wavelength/T
f = 1/T
Speed of sound (echo) = 2(Distance travelled)/Total time taken

Newton's Law
When velocity is constant, Fnet = 0 --> acceleration = 0
When not constant, Fnet not = 0 --> acceleration not = 0
Fnet > 0, accelearation > 0
Fnet < 0, acceleration < 0 Kinematics: Displacement-time graph --> Gradient: Velocity
Velocity-time graph --> Gradient: Acceleration
Acceleration-time graph

Equations:
S = 1/2 (u+v)t
V = u + at
S = ut + 1/2at^2
V^2 = u^2 + 2as

Free Fall
Fnet = mg

Non-free fall
Fnet = mg - R

Air resistance affected by:
1) SA -> When SA increase, AR increase
2) V -> When V increase, AR increase

WEP
Work Done: Force x Displacement / mgh (J)
Ek = 1/2mV^2 (J)
Ep = mgh (J)
Work-Energy relationship: Work done --> must have energy converted.
Close system: Total amount of energy remains same before and after work done

Power
1) Energy converted/Time
2) Work Done/Time
3) Force x Displacement/Time
4) Force x Velocity(has to be constant)

% Efficiency
(Energy/Work/Power output) / (Energy/Work/Power output) x 100%

CG & Moment
Moment = Force x (Perpendicular) Displacement
Equilibrium:
1) Clockwise moment = Anti-clockwise moment
2) Upward force = Downward force
Uniform: CG acts through middle
Light: Weight is negligible

Optics
From optically less dense to denser --> Bends towards normal. angle i > angle r, when incident along normal, no refraction though speed decreases.
From optically denser to less dense --> Bends away from normal. angle i < angle r, when incident along normal, no refraction though speed increases. Critical angle --> angle of incidence in denser medium that causes angle of refraction in less dense medium to be 90 deg

TIR: 1) optically denser to less dense. 2) angle i > critical angle

Refractive index
1) n = sin i/sin r--> i is always optically less dense medium
2) n = actual depth/apparent depth
3) n = 1/sin c

Below critical angle --> Have REFRACTION
Above critical angle --> Have REFLECTION

--

WOOHOO I FEEL MORE CONFIDENT NOW.
45 mins of mugging left.
Seeya later!
(: